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Abstract—Graphics processing units (GPUs) are an important
class of parallel processors that offer high compute throughput
and memory bandwidth. GPUs are used in a variety of important
computing domains, such as machine learning, high perfor-
mance computing, sparse linear algebra, autonomous vehicles,
and robotics. However, some applications from these domains
can underperform due to sensitivity to memory latency and
bandwidth. Some of this sensitivity can be reduced by better
overlapping memory access with compute. Current GPUs often
leverage pipeline parallelism in the form of warp specialization
to enable better overlap.

However, current warp specialization support on GPUs is
limited in three ways. First, warp specialization is a complex
and manual program transformation that is out of reach for
many applications and developers. Second, it is limited to coarse-
grained transfers between global memory and the shared memory
scratchpad (SMEM); fine-grained memory access patterns are
not well supported. Finally, the GPU hardware is unaware of the
pipeline parallelism expressed by the programmer, and is unable
to take advantage of this information to make better decisions
at runtime.

In this paper we introduce WASP, hardware and compiler
support for warp specialization that addresses these limitations.
WASP enables fine-grained streaming and gather memory access
patterns through the use of warp-level register file queues
and hardware-accelerated address generation. Explicit warp to
pipeline stage naming enables the GPU to be aware of pipeline
parallelism, which WASP capitalizes on by designing pipeline-
aware warp mapping, register allocation, and scheduling. Finally,
we design and implement a compiler that can automatically
generate warp specialized kernels, reducing programmer burden.
Overall, we find that runtime performance can be improved on
a variety of important applications by an average of 47% over
a modern GPU baseline.

I. INTRODUCTION

GPUs are the dominant parallel programming substrate with
widespread use in deep learning, high performance computing,
sparse linear algebra, autonomous vehicles, and robotics [26],
[35], [41]. GPU programmers spend considerable time opti-
mizing their code to best exploit available GPU resources.
However, some GPU applications are unable to consistently
attain high compute throughput or memory bandwidth despite
the presence of abundant parallelism [16], [17], [36], [39]. One
reason that these applications cannot reach peak performance
is due to memory latency and bandwidth sensitivity. This
sensitivity generally comes from the inability of the kernel

to overlap memory accesses with other useful work, causing
the resources in the GPU to become underutilized. One way
to provide better overlap and reduce memory sensitivity is to
refactor the application to exploit pipeline parallelism within
a kernel.

Today, GPUs deploy hardware and software libraries to
support pipeline parallelism via the warp specialization tech-
nique [1], [22], [23]. Warp specialization specializes a portion
of a GPU kernel to a particular task, creating pipeline stages
that can overlap their execution [2], [19], [48]. This technique
is commonly used in libraries supporting fast general matrix
multiplication, which typically pipeline coarse-grained global
memory to shared memory scratchpad (SMEM) transfers with
compute operations (e.g., TensorCore) [12]. Despite the broad
capability that warp specialization provides, we observe that
limitations of this start-of-the-art include: the lack of com-
piler support to create warp specialized pipelines, the lack
of support for fine-grained memory access patterns which
also benefit, and the unexploited opportunity of exposing the
structure of the pipeline to GPU hardware.

To address these limitations we introduce WASP, an ar-
chitecture and compiler for accelerating warp specialized
pipelines on GPUs. WASP natively supports a variety of fine-
grained memory access patterns and explicitly named warp
pipeline stages, allowing the GPU hardware to make better
runtime decisions. Named queues between pipeline stages are
implemented using ISA-exposed register queue operations,
supporting fine-grained streaming and gather access patterns.
We implement novel warp mapping and scheduling algorithms
that use named pipeline stages to take advantage of warp
heterogeneity. New hardware address generation units are used
to provide additional efficiency through offloading fine-grained
data movement operations. Finally, we propose a compiler
transformation that automates warp specialization and removes
the reliance on libraries and manual programmer effort.

We evaluate the WASP compiler and hardware across a set
of CUDA applications spanning a variety of domains. Overall,
we find that the WASP hardware and compiler improves
runtime performance over state-of-the-art GPUs by 47%.

In summary, we make the following contributions:
• We identify the limitations of existing warp specialization

on modern GPUs.
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(b) Two-stage warp specialized pipeline.

Fig. 1: Example of a common CUDA pattern: loading a tile of data from global memory to SMEM before performing
computation. During the memory tile transfer, observed memory latency is exposed and SM is underutilized (a). When using
warp specialization, a two-stage pipeline is extracted that allows overlap of compute and memory data transfer (b).

L1 Cache/Shared Memory

P
ro

c
e

s
s
in

g
 B

lo
c
k
-2

Register File

Warp Scheduler

P
ro

c
e

s
s
in

g
 B

lo
c
k
-0

Register File

Warp Scheduler

FUnitsx32 TensorCore

FUnitsx32 TensorCore

P
ro

c
e

s
s
in

g
 B

lo
c
k
-3

Register File

Warp Scheduler

P
ro

c
e

s
s
in

g
 B

lo
c
k
-1

Register File

Warp Scheduler

FUnitsx32 TensorCore

FUnitsx32 TensorCore

Fig. 2: GPU Streaming Multiprocessor architecture.

• We present explicit warp pipeline stage naming, which
we use to implement novel pipeline-aware warp mapping,
register allocation, and scheduling schemes.

• We design new hardware for fine-grained memory access
patterns, including an enhanced address generation unit.

• We design a compiler that automates warp specialization
and reduces programmer burden.

• We demonstrate that these WASP features greatly im-
prove performance across a variety of applications.

II. BACKGROUND AND MOTIVATION

A. GPU Architecture Overview

Modern GPUs are highly parallel processors featuring many
Streaming Multiprocessors (SM) connected to shared on-chip
L2 cache memory and off-chip DRAM memory. Figure 2
depicts the organization of an SM, which is made up of
a set of processors known as processing blocks that share
an L1 cache and shared memory scratchpad (SMEM) [22].
A processing block operates as a single-instruction multiple-
thread (SIMT) processor, with a single instruction fetched and
executed across a vector of threads known as a warp. The

processing blocks have both per-thread and warp collective
functional units (e.g., TensorCore functional unit), a large
register file, and warp scheduler for managing the execution of
a collection of warp contexts. The warp scheduler interleaves
the execution of warps on a processing block to hide pipeline
stalls. Nvidia’s GPUs are programmed by developing kernels
using the CUDA model and interface [25]. Each kernel is
organized as a hierarchy of threads which perform a portion
of the work of the entire program each. A thread block in the
CUDA model is a fundamental unit consisting of one or more
warps that execute concurrently and cooperatively on an SM.

Today, applications spanning a variety of compute domains
take advantage of the high compute and memory through-
put that GPUs offer. However, despite abundant parallelism,
some applications are sensitive to long memory latencies or
have difficulties in overlapping memory access and compute,
leading to GPU underutilization [16], [17], [36], [39]. One
particularly popular solution to this problem is exploiting
pipeline parallelism in the form of warp specialization.

B. Warp Specialization

The warp specialization approach to GPU pipeline paral-
lelism was first described in CudaDMA [1], and is prominently
used in CUTLASS [12], the popular state-of-the-art GEMM
library used for machine learning. In warp specialization, a
single thread block in CUDA is programmed to implement
a pipeline on an SM, using warps as pipeline stages. These
warps are “specialized” and execute a unique part of the
entire CUDA kernel. On current GPUs, communication be-
tween warps (pipeline stages) is facilitated through SM-level
synchronization and data storage. Compared with alternative
techniques such as intra-thread software pipelining, warp
specialization is a decoupled approach that allows dynamic
scheduling and fine-grained interleaving at the warp level.

Figures 1a and 1b present an example of warp specialization
in action. Figure 1a depicts the execution of a thread block on
a common GPU pattern: transferring memory tiles from global
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Fig. 3: Pointnet++ GPU chip-wide utilization of SM TensorCore and L2 Cache bandwidth. Comparison of alternating memory-
compute phased behavior on Ampere baseline (a) versus more consistent utilization on Ampere augmented with WASP (b).

memory to SMEM shared memory for use in a software-
managed buffer. In this scenario, the warps of a thread block
work together to synchronize on the state of the buffer and
transfer data between the two levels of the memory hierarchy.
First, a barrier is reached for the warps in the thread block,
indicating that the buffer in SMEM is ready to be written.
Next, the warps proceed to issue global memory load (LDG)
instructions. After the long-latency LDG instructions complete,
the buffer is written in SMEM using store-shared (STS)
instructions. Another thread block barrier is used to ensure
that all data for the memory tile has been successfully written
in the SMEM, and that it is ready for use. Load-shared (LDS)
instructions are then used freely by the warps to read data
from the buffer and perform computation. Finally, a barrier
is used to signal that all warps are finished with the buffer,
allowing the data to be modified or replaced.

In this common pattern, the compute phase cannot start until
the memory tile transfer phase successfully completes, and
vice versa. Thus, memory accesses are not overlapped with
compute and the strict bimodal nature of the phases ensures
that global memory bandwidth and compute functional units
(e.g. TensorCore, floating point) are not active at the same
time. Figure 1b depicts how warp specialization can be used
to create a two-stage pipeline. The original warp is split into
two new warps, one for memory access and one for compute.
The number of buffers and barriers is expanded to two (A
and B) to allow for double buffering. Similar to CudaDMA,
arrive/wait barriers are used [1]. On an arrive barrier, the
executing warp registers that it has reached the barrier, but
continues execution. Going back to the example in Figure 1b,
once stage 0 completes filling Buffer A, it arrives at the
FilledA barrier for that buffer, signaling to stage 0 that the
data tile is ready for use. Then stage 0 continues execution
by first waiting for Buffer B to be empty and ready to filled
(using the EmptyB barrier) before issuing the appropriate
LDG instructions. Thus, the memory tile transfer phase of
timestep N+1 overlaps with the timestep N of the compute
phase, with warp execution interleaved on the SM. Essentially,
more memory-level parallelism is extracted using this pipeline

parallelism, reducing overall memory sensitivity.

C. Limitations of Current GPUs

Warp specialization is a powerful technique that GPUs
adopt today with hardware support for fast arrive/wait barriers
and hardware offload units for memory transfers between
global memory and SMEM (Hopper incorporates a new Tensor
Memory Accelerator, or TMA) [22], [23]. However, current
GPU hardware and software support for warp specialized
pipelines is quite limited due to three key problems.

First, current GPU hardware is agnostic to pipeline par-
allelism expressed in software. GPU SMs in particular are
designed to execute data-parallel thread blocks as part of the
SIMT execution model, using warps that (for the most part)
execute identical programs. As such, SM hardware assumes
uniform resource utilization. On the other hand, thread blocks
with warp specialized pipelines are heterogeneous in nature,
with warps requiring different resources. Each pipeline stage
implemented by a warp requires a unique program, compu-
tational resources (e.g. functional units), register allocation,
and in some cases prefers a different warp scheduling pri-
ority [1], [2], [12], [19], [48]. If the GPU hardware was
aware of the pipeline parallelism expressed, new hardware
can be designed to exploit the heterogeneous nature of warp
specialized pipelines, leading to better performance.

Next, state-of-the-art GPU hardware supports pipelines with
coarse-grained memory tile transfers between global memory
and SMEM. While this support is sufficient for some important
use cases, such as the GEMM dataflows used in CUTLASS,
we find that a larger set of applications could benefit from
warp specialization provided support for fine-grained memory
access patterns. For example, Figure 3 presents Pointnet++
which performs deep learning on point sets and contains use-
once gather and streaming memory operations [33]. Despite
abundant parallelism, Pointnet++ struggles to maintain high
TensorCore and L2 Bandwidth utilization on Ampere due
to the inability to overlap alternating compute and memory
access phases (Figure 3a). WASP (this paper) is able to take
advantage of the opportunity to overlap the phases and achieve
better L2 bandwidth utilization (Figure 3b).
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Finally, a major current limitation to warp specialization
is that it is a complex optimization implemented manually
by the programmer at the CUDA source code level. The
programmer is responsible for partitioning the original kernel
into a pipeline, assigning threads to pipeline stages, and
managing data movement and synchronization between stages.
The complexity of the manual optimization limits the number
of applications that can exploit warp specialization. However,
this optimization is well-structured and suitable for compiler
automation, using similar techniques from prior research [9],
[21].

In this paper we introduce WASP, new GPU hardware and
compiler support to overcome existing warp specialization
limitations and improve performance across a variety of ap-
plications. WASP enables the structure of a thread block’s
warp specialized pipeline to be communicated to the SM and
more efficiently executed. WASP extends hardware support for
fine-grained memory access patterns using a new register file
queue and hardware offload unit. Finally, WASP is enabled by
a compiler that reduces programmer burden and automatically
warp specializes existing CUDA code.

III. WASP ARCHITECTURE

In this section, we detail how the WASP architecture im-
proves upon two of the limitations found in current GPUs (the
third limitation is detailed in Section IV). At the architectural
level, WASP manifests as augmentations to a GPU’s SM and
processing block. Figure 4 depicts the WASP SM architecture,
which updates the SM to better take advantage of the available
pipeline parallelism found via warp specialization.

First, thread block specifications are updated to explicitly
assign warps to pipeline stages (Section III-A), which enables
the SM to capitalize on the heterogeneous nature of the warp
specialized pipelines. WASP implements new hardware to
take advantage of per-pipeline stage behavior in the thread
block warp mapper and the warp scheduler, which are crucial
mechanisms for properly balancing warp execution. The warp
mapper includes support for new per-stage register allocation

TABLE I: WASP Thread Block Specification

Specification Set by Description
Thread dimensions Programmer {x,y,z}
Number of Pipeline Stages WASP Compiler Default=1
Pipeline Stage Registers WASP Compiler Per-stage
Named Queues WASP Compiler {src id, dst id, size}
SMEM usage Programmer Original program

WASP Compiler LDGSTS buffering

and pipeline-aware warp-to-processing block mapping (Sec-
tion III-B). WASP also includes a new warp scheduler to
emphasize execution overlap (Section III-D).

Second, WASP adds support for fine-grained streaming and
gather memory access patterns to better support the breadth
of CUDA applications that can potentially benefit from warp
specialization. Architecturally visible queues and associated
ISA extensions are added to each processing block’s shared
register file (Section III-C). These register file queues (RFQs)
provide low latency data access and naturally support the use-
once streaming and gather patterns not currently supported
on GPUs. Finally, we augment the TMA unit in the SM to
support streaming and gather memory access patterns, further
improving efficiency by reducing the warp address instruction
stream executed on the processing blocks (Section III-E).

A. Explicit Warp to Pipeline Stage Naming

Explicit naming assigns warps to pipeline stages in hard-
ware, allowing the programmer or compiler to specify the
configuration of the warp specialized pipelines. At the core,
each warp in a thread block is assigned a pipeline stage id.
Explicit naming is paramount to performance, as it enables
the other pipeline-aware features WASP employs, allowing the
SM hardware to be pipeline-aware and make better mapping,
register allocation, scheduling, and data movement decisions.
To implement explicit naming, WASP extends the thread block
specification and adds an additional dimension representing
the depth of warp specialized pipeline. Table I presents
this new specification, which includes other meta-information
generated by the WASP compiler in Section IV. This new
dimension is explicitly declared at CUDA kernel invocation
time by the programmer or code generation framework. The
new thread block dimension specification is in the form:

{dim.x, dim.y, dim.z, num pipeline stages}

When executing on the SM, a thread is assigned a
pipe_stageId. This new hardware state is found in the spe-
cial registers in the SM and can be queried by the threads of the
thread block to determine its assigned pipeline stage, similar
to querying other thread block parameters such threadId.x.

B. Pipeline Aware Warp Mapping and Register Allocation

When a thread block is scheduled to execute on an SM, each
warp must be mapped (i.e., assigned) to execute on a process-
ing block. The warp-to-processing block mapping is controlled
by a hardware mapper within the SM that first receives a
thread block specification from a global GPU scheduler, then
distributes the warps of the thread block among the processing
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blocks for execution in a round-robin manner. WASP’s warp
mapper leverages the new information in the thread block
specification to improve both the warp-to-processing block
mapping algorithm and warp register allocation.

The warp mapping algorithm focuses on balancing compu-
tation resource usage by minimizing the mapping of similar
pipeline stages to the same processing block. The algorithm
group_pipeline maps all warps belonging to the same
warp specialized pipeline slice together on the same processing
block. Figure 5 demonstrates the potential value of the WASP
mapping algorithm over the original round-robin mapping
algorithm. The WASP thread block consists of a two-stage
warp specialized pipeline, with each stage having four warps.
Imagine the scenario in which S0 is a memory access stage
and S1 is a compute stage. The round-robin algorithm maps
warps one at a time alternating across the processing blocks,
leading to imbalanced execution with S0 stages mapped to
processing blocks 0 and 2, and S1 stages mapped to processing
blocks 1 and 3. The group_pipeline algorithm provides
better balance by executing the warps of each pipeline slice
on the same processing block.

During the warp mapping process, register allocation for the
warp is performed by carving out a contiguous segment of the
processing block’s shared register file. In warp specialization,
different pipeline stages run different programs and therefore
use a different number of registers. However in current GPUs,
warp specialized pipelines are allocated a uniform value for
warp register allocation which is the maximum usage among
all pipeline stages. Among the kernels we evaluated, some
pipeline stages require nearly the same number of registers per
thread as the original program, which can result in a nearly N
times increase in thread block register usage for an N -stage
pipeline. WASP uses the per-pipeline-stage register values
from the thread blocks specification in Table I to allocate
uniquely-sized register segments, which saves considerable
register file space and is a improvement over state-of-the-
art. Figure 7 presents an example comparison for the register
per thread allocation among the original program, a warp
specialized program on existing GPUs, and the register savings
provided by WASP. More data on register allocation savings
can be found in Section V-D.

C. Register File Queues

While current GPU hardware for warp specialization sup-
ports coarse-grained memory tile data movement between
global memory and SMEM, some memory-sensitive CUDA
applications heavily utilize use-once data. This use case man-
ifests as fine-grained streaming and gather memory access
patterns, which WASP supports by using a queue between
pipeline stages. In the queue design for WASP, we investigated
where the data storage and synchronization of data queues
should occur. One option is to simply use the same software
mechanisms used for coarse-grained memory tiles: SMEM
double buffering and the hardware synchronization unit.

However, managing data in and out of SMEM results in
execution overheads. Each original global load instruction is
converted into a load-global store-shared LDGSTS instruction
within the producer stage to store into the buffer, which
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require additional address generation instructions and control
instructions for keeping track of whether the buffer is full or
not. The consumer stage’s code is similar, with the exception
of requiring a shared memory load (LDS) instruction to read
the queue. When the buffers are full or empty, the producers
and consumers must notify each other, using the appropriate
arrive/wait barriers. While for coarse-grained memory trans-
fers this overhead is amortized by data reuse, there is no
amortization in the use-once streaming and gather memory
access patterns. After evaluation we find that these overheads
are high and impact performance (Section V-C) .

With these considerations in mind, we architect hardware
queues in WASP by mapping them as circular buffers in
the existing register file space. Figure 6 depicts how register
file queues (RFQs) integrate into the SM processing block.
Similar to per-warp register allocation, named queues con-
necting pipeline stages are explicitly defined in the thread
block specification and allocated in the physical register file at
warp mapping time. For example, TB0 W0 S0S1 specifies
that thread block 0 has a named queue connecting stages 0
and 1 of original warp 0. Each named queue is supported by
an accompanying hardware table to maintain the state of the
queue, which includes the head pointer, tail pointer, queue
allocation start index, and queue allocation end index.

We extend the GPU’s ISA to use these names directly as
warp instruction operands, similar to registers. For example,
when TB0 W0 S0 executes the following warp instruction:

LDG Q1, [RX]

A decoupled load to global memory is issued, sending data
to TB0 W0 S1 using the TB0 W0 QS0S1 queue. Simi-
larly, TB0 W0 S1 can execute the following warp instruction
to read the data from the TB0 W0 S1 queue:

MOV RY,Q0

An RFQ scoreboard sitting at the warp instruction scheduler
supports whether there is either data in the queue (i.e., on a
read) or if there is room in the queue for more data (i.e.,
a write). These scoreboard bits is_empty, is_full are
updated on successful reads or writes to an RFQ.

D. Pipeline Aware Warp Scheduling in the SM

We also augment the existing hardware warp scheduler
within the processing blocks with a new pipeline-aware prior-
itization policy that promotes execution overlap. The existing
hardware warp scheduler stores information about the state
of each warp (e.g., waiting on long/short scoreboard) which
is used to determine its scheduling priority. In WASP, each
hardware warp scheduler is augmented to store the pipeline
stage id and incoming data queue status (e.g., queue is not
empty, queue is full) for each warp, which act as additional in-
puts to the scheduling decision making algorithm. Using these
new inputs, we implement novel warp scheduling policies that
leverage the pipeline stage meta information for prioritization.

The first policy uses the pipeline stage id input to prioritize
a warp based on which stage it is in the pipeline. Our

SM

SMEMWASP

TMA

Global Memory Interface

Processing Block

Tile Data

RF/

RFQ

(a) Global-SMEM
access pattern.

SM

SMEMWASP

TMA

Global Memory Interface

Processing Block

RF/

RFQ

(b) Streaming access
pattern.

SM

SMEM
WASP

TMA

Global Memory Interface

Processing Block

Gather

Data

RF/

RFQ

Tile Data

(c) Gather access
pattern.

Fig. 8: WASP-TMA data movement patterns.

naming convention defines pipe_stageId_0 as the first
stage in the pipeline, and pipe_stageId_N-1 as the final
stage in a N-stage pipeline. Given a set of warps executing
on an SM processing block, WASP provides the ability to
prioritize earlier stages by increasing order of the value of
their pipe_stageId. We find that prioritizing earlier stages
of the pipeline is generally a good idea, as these stages tend
to be memory access stages with long memory latencies we
want to overlap.

The second policy builds upon the first and uses the RFQ
status input to prioritize which warp to schedule. For each
warp, we keep the following bits: is_empty, is_full.
Our hardware warp scheduler uses the is_empty, is_full
RFQ status bits to prioritize consumer warps when data is
ready. These two policies are combined in our augmented
hardware warp scheduler. In Section V-E, we find that prior-
itizing warps with full queues, followed by warps with ready
buffers or nonempty queues, followed by earlier stages of the
pipeline performs best.

E. WASP-TMA: Accelerating Address Generation

TMA is an offload accelerator for coarse-grained memory
tile transfers between global memory and SMEM. TMA
uses new instructions to specify the global memory block to
transfer, using meta information such as base address, stride,
offset, and the dimensions [23], [24]. Offloading memory
access instruction streams to TMA achieves two benefits. First,
hardware acceleration reduces warp instruction issue slots
and registers, allowing more resources in the SM processing
block for computation, such as TensorCore operations. Sec-
ond, leveraging specialized hardware generates accesses more
efficiently, reducing energy consumption. WASP augments
TMA with the ability to handle fine-grained memory accesses
at the thread granularity, using hardware similar to prior
ISA extension proposals [8]. Figure 8 presents the patterns
that WASP supports, which includes memory tile transfers
between global memory and SMEM (Figure 8a), streaming
data between global memory and RFQs (Figure 8b), and
gather operations between global memory and SMEM/RFQ
(Figure 8c).
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A TMA-like global-SMEM instruction is used to move
coarse-grained data between global and SMEM, using arrive-
wait barriers for synchronization. A new global-RFQ con-
figuration is added to target a named RFQ instead of SMEM.
Fine-grained synchronization is accomplished using the sta-
tus table for the RFQ. Typical decoupled LDG instructions
writing a register file queue acquire a single entry in queue.
WASP-TMA global-RFQ instructions acquire multiple entries,
delaying issue until they are available.

The gather access pattern (C[i] = B[A[i]]) focuses on
minimizing data movement and effectively fuses two op-
erations together. The WASP-TMA (gather-SMEM) and
(gather-RFQ) instructions first generate a gather memory
access stream to an array of indices in global memory. As the
gather indices arrive at global memory, they are consumed by
WASP-TMA and processed in a second phase. The second
phase combines the gather indices with a base address to
generate a memory request stream that either targets SMEM
(gather-SMEM) or the RFQ (gather-RFQ). Incoming
indices are held in a ping pong buffer with two entries, one
for the set of indices currently being processed by TMA
and another entry for receiving a new set of indices in the
same cycle. By not writing the gather indices back to SMEM,
WASP-TMA eliminates extra RFQ and SMEM traffic that
would otherwise be required.

IV. WASP COMPILER DESIGN

Warp specialization is a non-trivial transformation cur-
rently implemented manually either by the programmer or
using optimized libraries like CUTLASS for GEMMs [12].
WASP removes this limitation through a programmer-directed
compiler transformation that automatically generates warp
specialized CUDA kernels to run on a WASP-enabled GPU.
Our compiler performs binary recompilation, using Nvidia’s
SASS assembly from nvdisasm [24]. We also make sim-
plifying assumptions to aggressively exploit the GPU’s weak
consistency model: that thread block synchronization is used
only for SMEM transfers, and that memory fences are not
used. The programmer is expected to ensure that these two
assumptions are true for their kernel before enabling the warp
specialization transformation. While our implementation is a
source-to-source compiler, other works for decoupled access
execute processors show such ideas can be embedded into
mainstream GPU compilation infrastructure [21], [43]. The
target output for the compiler is a SASS program that runs on
our WASP GPU performance model (Section V-A). We first
extract potential pipeline stages using a program dependence
graph (PDG) (Section IV-A), then finalize the warp specialized
pipeline as a SASS program (Section IV-B). Detailed examples
of how each memory access pattern is transformed are found
in Section IV-C.

A. Pipeline Stage Extraction

Similar to past work, the WASP partitioning process focuses
on overlapping long-latency memory accesses with compute

AGEN

BRA

LDG B

COMPUTE

CTRLB
B

_
B

B
B

_
A

B
B

_
C

LDG A CTRL

1

1

2

2

2

Fig. 9: Example of two-phase pipeline stage extraction.

by breaking the original program into pipeline stages using
global memory load-use boundaries [9], [10], [20], [40], [47].

First, we construct a program dependence graph (PDG)
of the original SASS program. Our PDG maintains control
flow edges and data dependencies between instructions of
the program. Next, we partition the PDG into warp pipeline
stages using a pipeline stage extraction scheme similar to
OUTRIDER [9]. We identify all global memory load in-
structions (LDG) within the kernel and determine which are
eligible for pipeline stage extraction using the instruction’s
backslice. The backslice includes all instructions in the original
program that the LDG directly depends on and the instructions
contributing to program control flow that the LDG indirectly
depends on. A backslice containing SMEM load instructions
(LDS) instructions indicates that the LDG may have memory
dependencies to SMEM store (STS) instructions that cannot
be tracked and is therefore not eligible for pipeline stage
extraction. Similarly, a backslice containing a dependency
cycle of the LDG with itself are also excluded. We find in
practice that both situations are not common in GPU code.

Each eligible LDG instruction is split into two new in-
structions at the load-use boundary: LDG_PRODUCER for the
address, and LDG_CONSUMER for the result of the load. As
a special case, we identify LDG instructions that are only
connected to SMEM stores and combine into a single load-
global store-shared (LDGSTS) instruction. These LDGSTS
instructions require specific synchronization as described later.

In the first extraction phase, an initial new stage is created
for each LDG_PRODUCER and LDGSTS using a collection
of required instructions and basic blocks. The backslice of
address generation instructions for each LDG_PRODUCER and
LDGSTS is identified and added to the collection by traversing
the PDG. The backslice depth-first search terminates at either
dependence chain endpoints or upstream LDG_PRODUCER
instructions. Figure 9 depicts that the address generation
backslice for LDG B terminates at LDG A and contains two
instructions ( 1 ).

The second extraction phase completes the new stage’s
PDG subgraph by adding the minimum basic blocks and
associated control flow instructions. For each instruction in
the stage’s collection, the parent basic blocks that flow into the
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Fig. 10: Example of pipeline stage SMEM double buffering.

instruction’s assigned basic block are added to a search list.
For each unvisited basic block in the list, the block is marked
visited and checked to see if it contains a branch instruction.
If there is a branch, a backslice of instruction for the branch
is generated and added to the collection. The search process
continues until all instructions in the collection have been
examined, signaling the collection represent all the instructions
required for executing the stage. A PDG subgraph is generated
using the instructions, keeping them in the original program
order. Figure 9 shows that the address generation instructions
in 1 are assigned to basic block B (BB_B) and parents BB_A
and BB_B are added to the search list. BB_A has no branch,
while BB_B has a branch to backslice. The instructions in 2
are added to the stage’s collection, and the process continues.
Basic blocks BB_A and BB_B have already been visited, so
the second extraction phase completes.

An optimization pass is performed at the end of the second
phase to detect if the LDG or LDGSTS instruction is contained
in a loop that can be offloaded to WASP-TMA. If the loop and
address generation pattern is suitable, the identified control
flow and address generation instructions within the loop are
replaced with a WASP-TMA configuration instruction.

B. Pipeline Finalization and Configuration

When all eligible LDG_PRODUCER instructions have been
processed and all stages extracted, a final program representing
the warp specialized pipeline is generated. First, there is a set
of original program instructions that remain unallocated. This
set of instructions represents the compute belonging to the
final pipeline stage, including all shared memory and global
store instructions. These instructions are allocated to a new
stage, and remain in program order. Next, stages are optionally
merged depending on the whether the number of stages
extracted can be supported on the SM. We find that optimized
SASS for CUDA kernels can have tens to hundreds of static
LDG instructions that are extracted into stages. Considering
the original thread block dimensions of CUDA applications
we studied, such a warp specialized kernel will not fit on the
SM. To reduce this large number of extracted stages, we use
a scheme from prior work that merges memory access stages
with similar level of memory indirection [9]. We find that this
scheme performs well while fitting within the resources of the
SM.

After this optional merge step is complete, the stages are
given explicit pipeline stage names based on their natural
order. For a pipeline of size N , stage zero is always the
earliest stage and stage N − 1 the last stage. The thread
block specification is then updated with the number of pipeline
stages. Table I depicts the thread block specification table that
is populated during this final process.

The communication and synchronization between stages is
also finalized. We handle stages with LDG and LDGSTS in-
structions differently. For LDG_PRODUCER and corresponding
LDG_CONSUMER instructions the RFQ is used, and a new
named queue connecting the two stages is added to the thread
block specification with a fixed size. The LDG_PRODUCER
and corresponding LDG_CONSUMER instructions are updated
to use the named queue, and the LDG_CONSUMER instruction
is optionally merged into the dependent instruction if there is
only a single dependent instruction.

Stages with LDGSTS instructions must synchronize with the
compute pipeline stage to ensure correct behavior. As seen in
Figure 1b, this implies inserting coordinated arrive/wait barri-
ers. Our compiler automates the process found in CudaDMA
for both single and double buffering. For both cases, we first
identify a pair of BAR.SYNC barrier instructions that enclose
the LDGSTS by inspecting the PDG. For single buffering,
each BAR.SYNC instructions is replaced with an arrive/wait
barriers at the same program location in the two warps
using BAR.WAIT and BAR.ARRIVE instructions (example
provided in Section IV-C).

Double buffering is more complex and requires doubling
the SMEM buffer and arrive/wait barriers [1]. We use the
address backslice of the LDGSTS instruction and the SMEM
allocation information from nvdisasm to identify which
shared buffer is used. A check is performed to determine if
there is SMEM capacity available for double buffering, before
resizing and applying the transformation. Figure 10 presents
how the program uses this larger buffer to achieve the result in
Figure 1b. The subprogram for the global-to-SMEM transfer
between the two enclosing barriers is replicated to create two
new subprograms accessing different halves of the SMEM
buffer, with each using unique sets of arrive/wait barriers
(A and B in Figure 10). New basic blocks (swap_buffer,
completed) are added before and after the subprograms with
instructions that switch execution between the two buffers by
alternating the base address. For the later pipeline stage (Stage
1 in Figure 10), barrier A is initially set as arrived.

Finally the programs for the pipeline stages are combined to
create a complete SASS program. First register re-allocation is
performed; the WASP compiler performs a simple reallocation
by compacting the registers into contiguous space. The thread
block specification is updated to assign register allocation
sizes per stage (Table I). The pipeline stages are then written
sequentially to a final SASS program. A jump table is added to
the top of the program to direct each warp to the appropriate
code section, using the special register for WASP’s explicit
naming (Section III-A).
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int* in; //global memory
int* out; //global memory
...
int start= (…) + threadId.x;
int end = start + warp_transfer_size;
for (int i=start; i<end; i+=WARP_WIDTH)
    out[i] = in[i];
...

(a) CUDA Snippet.

ADD

ADD

BRA

LDG

STG

ADD

ISETP

Warp 0

(b) Dataflow graph (DFG) snippet.

ADD
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ADD
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ISETP

Q

Warp 0 - Stage 0 Warp 0 - Stage 1

(c) WASP DFG transformation.

Fig. 11: Streaming pattern.

int* index; //global memory
int* data;  //global memory
int* out;   //global memory
...
int start= (…) + threadId.x;
int end = start + warp_transfer_size;
for (int i=start; i<end; i+=WARP_WIDTH)
    out[i] = data[ index[i] ];
...

(a) CUDA Snippet.
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MUL

Warp 0

(b) Dataflow graph (DFG) snippet.

ADD

ADD

BRA

LDG

STG

ADD

ISETP

ADD

BRA

ISETP
LDG

MULADD

BRA

ISETP
Q

Q

Warp 0 – Stage 0 Warp 0 – Stage 1 Warp 0 – Stage 2

(c) WASP DFG transformation.

Fig. 12: Gather pattern.

int* in; //global memory
__shared__ int buffer[];
...
__syncthreads(); //sync buffer ready
int start= (…) + threadId.x;
int end = start + warp_transfer_size;
for (int i=start; i<end; i+=WARP_WIDTH)
    buffer[i] = in[i];
__syncthreads(); //sync transfer done
...

(a) CUDA Snippet.

ADD

ADD

BRA

LDG

STS

ADD

ISETP

BAR.WAIT

BAR.WAIT

Warp 0

(b) Dataflow graph (DFG) snippet.
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BRA ADD
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LDGSTS

BAR.WAIT

BAR.ARRIVE

BAR.ARRIVE

BAR.WAIT

Warp 0 – Stage 0 Warp 0 – Stage 1

(c) WASP DFG transformation.

Fig. 13: Global-to-SMEM pattern.

C. Memory Access Pattern Examples

Figures 11, 12, and 13 depict examples of generating of
warp specialized pipelines for the streaming global-to-RFQ,
gather global-to-RFQ, and global-to-SMEM patterns. Each of
examples focuses on the inner loop of a CUDA kernel, and
depicts an instruction-level dataflow graph for the basic block
of that inner loop.

Figure 11 shows a streaming global-to-RFQ example for
copying an input vector to an output vector. In the inner
loop, the warps execute a global load instruction (LDG) that
forwards data into a global store instruction (STG). Both the
LDG and STG instructions have their own address generation
instructions (ADD), and the inner loop has instructions that
manage the control flow (black). Considering the single LDG
instruction in the inner loop, the WASP kernel consists of
two pipeline stages (warp0 stage0 and warp0 stage1). The
backwards slice of instructions contributing to the LDG address
are allocated to the earlier pipeline stage, and the remaining
instructions to the later pipeline stage. The control flow
instructions for the basic block are replicated across both
warps, to maintain coherent execution between the two stages.
Finally, the LDG destination operand is connected to the STG
source operand using the QS0S1 named queue.

Figure 12 shows how a gather global-to-RFQ operation
leads to an additional pipeline stage. The CUDA inner loop
reads from global memory array index and uses the result as
an index into the data array. This indirection manifests in the
DFG as an additional LDG and address generation. Similar to
the prior global-to-RFQ example, both LDG instructions of the

original inner loop are used as the point of partitioning. Three
total stages are generated, with replicated control flow instruc-
tions queues used to connect the pipeline stages together.

Figure 13 shows how WASP generates code for global-
to-SMEM memory tile transfers using single buffering. In
the original CUDA program, shared memory is allocated for
the buffer array that is shared among all threads in the
thread block. The __syncthreads() function is used to
synchronize on the state of buffer before and after the
transfer. The dataflow graph looks otherwise similar to the
streaming copy example, with the only exception a SMEM
store instruction (STS) replacing the STG. First, the LDG
and STS instructions are fused into a single LDGSTS in-
struction, and the appropriate address generation and control
flow instructions are allocated to the earlier pipeline stage
warp0 stage0. The warp0 stage1 is empty of instructions in
the inner warp as there is no compute. Finally, the BAR.WAIT
and BAR.ARRIVE instructions are inserted to synchronize the
threads, similar to the example in Figure 1b.

V. EVALUATION

A. Experimental Setup

We evaluate WASP using a modified version of NVIDIA’s
NVArchSim (NVAS), a hybrid trace- and execution-driven
GPU simulator [45] that has been validated against NVIDIA’s
Ampere GPU. Table III summarizes the configuration we
use to evaluate WASP. We augment an Ampere A100 [22]
model with support for fast arrive/wait barriers and a TMA-
like accelerator to model modern features utilized by warp
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TABLE II: Benchmarks and Median / Maximum Kernel Speedups with WASP
# Unique # Total % cuBLAS Median / Max

Name Category Kernels Kernels / GEMM Kernel Speedup Description
3d unet ML/Robotics 19 60 45% 1.14x / 6.92x Dense Volumetric Segmentation [35]
bert ML/Robotics 9 172 56% 1.14x / 1.51x Encoder Transformer Network [35]
curobo ML/Robotics 2 6 0% 1.43x / 1.64x Kinematics for robot motion planning [41]
dlrm ML/Robotics 7 9 56% 1.17x / 1.33x Deep learning recommendation model [35]
gpt2 ML/Robotics 39 574 17% 1.19x / 5.20x Generative Pre-trained Transformer [34]
pointnet ML/Robotics 1 1 0% 1.42x / 1.42x Deep learning point set segmentation [28], [33]
rnnt ML/Robotics 8 16 0% 1.56x / 5.01x Recurrent neural network [35]
spmv1 g3 cuSPARSE 2 2 0% 1.02x / 1.11x Sparse matrix dense vector multiply [4], [26]
spmv2 web cuSPARSE 2 2 0% 1.01x / 1.10x Sparse matrix dense vector multiply [7], [26]
spmm1 g3 cuSPARSE 1 1 0% 1.15x / 1.15x Sparse matrix dense matrix multiply [4], [26]
spmm2 web cuSPARSE 1 1 0% 3.53x / 3.53x Sparse matrix dense matrix multiply [7], [26]
spgemm1 econ cuSPARSE 13 30 0% 1.05x / 1.53x Sparse matrix sparse matrix multiply [6], [26]
spgemm2 road cuSPARSE 13 30 0% 1.06x / 2.35x Sparse matrix sparse matrix multiply [5], [26]
hpcg HPC 1 2 0% 1.17x / 2.25x Multigrid conjugate gradient [27]
hpgmg HPC 14 317 0% 1.67x / 11.25x Geometric multigrid linear solver [14]
lulesh HPC 14 6,537 0% 1.35x / 2.79x Hydrodynamics simulation [18]
snap HPC 7 3,254 0% 1.24x / 1.69x Particle transport [32]
lonestar bfs Graph 3 289 0% 3.61x / 4.06x Breadth-first search [3]
lonestar mst Graph 6 37 0% 1.34x / 3.39x Minimum spanning tree [3]
lonestar sp Graph 3 11 0% 1.94x / 2.43x Survey propagation [3]

TABLE III: NVArchSim A100+ Configuration
SMs 108
Processing Blocks 4 per SM
Register File 256KB per SM
L1 Cache/SMEM (KB) 192
L2 Cache (MB) 40
Warp scheduling scheme Greedy then oldest (GTO)
Warp Specialization Hardware arrive/wait barriers

TMA-like offload accelerator
WASP 32-entry RFQ per warp

Pipeline-aware warp mapping & scheduling
Per-stage register allocation
WASP-TMA offload accelerator
16 maximum stages

specialized pipelines [23]. For WASP, we also model the
new thread block specification, thread block RFQs, pipeline-
aware warp mapping, register allocation, warp scheduling,
and the WASP-TMA offload accelerator. For software, we
automatically generate configurations using our compiler tool.
We direct the compiler on a per-kernel basis whether to use
warp specialization or not, depending one whether such a
transformation improves performance over the baseline. The
SASS programs and thread block configurations from the
NVAS trace are transformed into warp specialized versions
utilizing WASP hardware.

We evaluate WASP on a variety of benchmarks (Ta-
ble II), which were selected after determining they bene-
fit from warp specialization. The benchmarks come from
MLPerf [35], cuSPARSE [26], machine learning, robotics, and
high-performance computing and are fully-optimized. These
benchmarks often represent full applications with many unique
and dynamically executed kernels. Across the kernels of a
benchmark, Table II presents the median and maximum kernel
speedup achieved by WASP. We find that many kernels experi-
ence speedups greater than 2× with the combination of WASP
compiler and hardware support, with a maximum achieved
speedup of 11.25×. Our baseline GPU models CUTLASS
warp specialization on the GEMM and cuBLAS kernels of

the benchmarks by utilizing the WASP-compiler for coarse-
grained tile transfers and idealized warp mapping.

B. Overall WASP Hardware and Compiler Performance

Figure 14 presents the overall speedup of WASP over
the baseline GPU model that uses CUTLASS warp spe-
cialization (BASELINE). We first evaluate the WASP com-
piler in isolation on the baseline with two versions: one
that only supports coarse-grained transfers between global
and SMEM (WASP COMPILER TILE), and one that also
warp specializes for streaming and gather memory transfers
(WASP COMPILER ALL). In isolation, the WASP com-
piler configurations cannot take advantage of pipeline-aware
hardware and require the use of SMEM queues for the newly
support memory access patterns. We model SMEM queues as
described in Section III-C. Finally, our last comparison point
is the WASP GPU hardware targeted by the WASP compiler
(WASP GPU+WASP COMPILER ALL).

WASP capitalizes on warp specialization by implement-
ing a compiler to automatically generate pipeline par-
allelism and reduce programmer burden. We find that
WASP COMPILER TILE alone is able to improve per-
formance over state-of-the-art libraries like CUTLASS
(BASELINE) by transforming the kernels that are not oth-
erwise warp specialized (Table II). However, the lack of
compiler support for streaming and gather memory access
patterns, managing warp mapping, and lack of hardware fea-
tures to improve occupancy (e.g. per-thread register allocation)
limits the performance gains of WASP COMPILER TILE.
For benchmarks with that can exploit our CUTLASS model
(3d_unet, bert, and gpt2), WASP COMPILER TILE
improves runtime by 4%. WASP COMPILER TILE im-
proves runtime by 3% on the other benchmarks that are
not able to capitalize on CUTLASS as they do not feature
GEMMs. Benchmarks with kernels that exhibit significant
opportunity to overlap coarse-grained memory transfer, such
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Fig. 15: Performance improvement of WASP GPU when adding new hardware features progressively.

as gpt2, sp, and spmv2_web see runtime improvements
greater than 10%.

We find that there is much unexploited opportunity for
warp specialization on gather and streaming memory pat-
terns in these benchmarks. Across the 20 benchmarks,
WASP COMPILER ALL is able to improve runtime over
the baseline by greater than 10% on 12 benchmarks, by
up to 149% and 23% geometric mean via better over-
lapping of compute with memory access streams. Five
memory-latency sensitive benchmarks with frequent streaming
and gather memory accesses (rnnt, hpcg, hpgmg, sp,
and spmm_web) improve their runtime performance over
WASP COMPILER TILE by more than 40% on average.
However, eight of the benchmarks do not see significant
benefit with the WASP compiler alone.

WASP GPU+WASP COMPILER ALL provides
augmented GPU hardware that synergizes with the
WASP compiler to improve run-time performance
by over 10% for all benchmarks. On average,
WASP GPU+WASP COMPILER ALL improves
performance over BASELINE by 47%, and over the
WASP compiler alone by 23% mean. Compute heavy
machine learning benchmarks like 3d_unet (80%), bert
(18%), gpt2 (43%), and pointnet (42%) improve
performance over the CUTLASS baseline by more naturally
overlapping gather and streaming memory access patterns.
Other memory-sensitive benchmarks like spmv and spmm
are better able to saturate DRAM and L2 memory bandwidth.
Graph algorithms bfs (78%), mst (51%), and sp (72%)

heavily leverage the WASP-TMA support for streaming
and gather memory access patterns, reducing total dynamic
instructions and extracting more memory-level parallelism to
better utilize memory bandwidth.

C. Performance impact of WASP hardware features

WASP adds several hardware features to the GPU to better
exploit the pipeline parallelism found in warp specialization.
Specifically, WASP adds pipeline-aware warp scheduling, reg-
ister file allocation, register file queues, and WASP-TMA.
Figure 15 presents the runtime performance of each of these
features added progressively to the baseline GPU.

Pipeline-aware warp register allocation reduces pressure for
register file resources, allowing more kernel thread blocks to
concurrently execute on the same SM, while also enabling
larger RFQs. We find that better register allocation provides a
4% geometric mean runtime improvement across the bench-
marks. Section V-D details additional analysis of register
footprint savings provided by WASP.

The main benefit that WASP-TMA provides is the reduction
in dynamic instructions, which frees up processing block in-
struction issue for other useful work. We find that instruction-
issue limited benchmarks like bfs (+29%) and mst (+30%)
benefit the most. WASP-TMA provides an additional 2%
geometric mean runtime improvement across the remaining
benchmarks. Further analysis of WASP-TMA and dynamic
instructions is in Section V-G.

The use of SMEM queues required by software-only im-
plementations (WASP COMPILER ALL) increases SMEM
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Fig. 16: Register footprint per thread block for uniform thread
allocation and per-stage allocation (WASP) compared against
a non-warp specialized baseline.

bandwidth consumption and processing block instruction uti-
lization (Section III-C). RFQs remove the expensive over-
head of SMEM queues and reduce activity and contention
for SM resources. 3d_unet (+32%), pointnet (+18%),
and spmm1_g3 (+16%) spmm2_web (+32%) are SMEM
bandwidth-sensitive and see more than 15% better perfor-
mance improvement from RFQs, while the rest of the bench-
marks are not sensitive and see an additional 4% mean
improvement.

Finally, pipeline-aware warp scheduling provides an addi-
tional 4% mean runtime improvement across the benchmarks.
The WASP warp scheduling policies prioritize the warps of
earlier memory access stages to promote execution overlap.
Benchmarks that are more imbalanced between memory ac-
cess and compute instruction streams particularly benefit from
improved warp scheduling. For example, 3d_unet (+15%),
pointnet (+12%), and snap (+6%) execute many more
instructions in the compute stage of their pipelines, and
the WASP policies ensure that earlier stages have plenty of
instruction slots to keep the pipeline filled. More detailed
analysis of the warp scheduling policies WASP uses is in
Section V-E.

D. Pipeline-aware Register Allocation

Figure 16 presents the register allocation for thread blocks,
comparing uniform register allocation to the per-stage reg-
ister allocation enabled by WASP. This allocation does not
include registers for RFQs, but does include register savings
by offloading memory accesses to WASP-TMA. For each
benchmark, the kernel contributing the most to total runtime
is chosen, which varies between 33% and 100% depending
on the benchmark. We find that more than half of these
kernels are very unbalanced and heavily skew their register
allocations towards compute stages. As a result, many of
these kernels have nearly the same number of registers in
the compute stages as in the original non-warp specialized
kernel. When uniform register allocation is performed, 12 of
the kernels increase total thread block register footprint by
more than 75%, with 3d_unet, bert, dlrm, spmv, and
spgemm1_econ requiring a register footprint nearly double
in size. When WASP’s per-stage register allocation is enabled,
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Fig. 17: Performance impact of pipeline-aware warp schedul-
ing over a greedy-then-oldest baseline.
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Fig. 18: Average performance improvement when varying the
size of the register file queues.

the register foot print for the kernels decreases by 44% on
average, allowing more registers in the SM to be used for
RFQs and other thread blocks. The resulting register footprint
overhead is 26% over the non-warp specialized baseline.

E. Pipeline-aware Warp Scheduling

Figure 17 presents detailed results comparing four classes
of pipeline-aware schedulers to the baseline greedy-then-
oldest scheme. Among the schemes presented, producer-
first schemes prioritize based on earlier pipeline stage and
full/ready queue schemes prioritize warps with full or ready
queues first, then earlier pipeline stages. In general, prioritizing
earlier pipeline stages performs best, due to the policy pro-
moting memory level parallelism and thereby better overlap.
Some benchmarks such as 3d_unet and pointnet are
especially unbalanced between computer and memory access
stages, preferring policies leveraging queues status to perform
better load balancing.

F. Register File Queue Sizing

Figure 18 shows how varying the RFQ size impacts per-
formance on average across the benchmarks. Having more
entries can improve the ability to better overlap compute with
memory access, but also increases register file footprint which
can reduce the number of concurrently executing thread blocks
on the SM. While the queue size can be individually set
per kernel, we find on average that 32 entries per channel
is the best balance and provides a 15% improvement over 8
entries. After 32 entries, register pressure reduces SM thread
block occupancy for many of the benchmarks. The 3d_unet,
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Fig. 19: Dynamic instructions executed for baseline (B), WASP software address generation (W), and WASP-TMA (T).
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Fig. 20: Evaluation on different GPU configurations, varying memory bandwidth.

pointnet, spmm2 benchmarks see the most benefit when
increasing the size of the queue, with more than 20% runtime
improvement when the queue size is at least 32 entries per
channel instead of 8 entries.

G. Dynamic Instruction Overhead

Figure 19 shows the breakdown in dynamic instructions
executed by category. Using our WASP compiler, we annotate
instructions by category using PDG analysis and collect the ex-
ecution statistics using the NVAS performance model. WASP
kernels naturally contain overhead instructions for managing
the control flow for extra warps forming the pipeline. We find
on average that WASP generates 18% extra dynamic instruc-
tions, with a worst case of 52%. Generating WASP programs
targeting WASP-TMA reduces dynamic instructions executed
on the processing blocks by reducing memory, address gener-
ation, and control instructions in the memory-access warps.
Some CUDA applications like hpcg, pointnet, spmm,
bfs, and sp benefit greatly and reduce their dynamic instruc-
tions to as much as 46% of the baseline. These applications
prominently feature kernels that are dominated by structured
memory accesses inside well-defined loops.

H. L2 Bandwidth Utilization

The goal of warp specialization is to better overlap mem-
ory access and compute, which results in better utilization
of compute and memory resources. Figure 21 presents the
L2 bandwidth utilization of each of the benchmarks on the
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Fig. 21: L2 bandwidth utilization for WASP over the baseline.

BASELINE and WASP GPU+WASP COMPILER ALL.
We find that WASP generally improves utilization over the
baseline. For curobo, pointnet, and spgemm, nearly all
the speedup is attributable to better L2 and DRAM utilization.
In some benchmarks like 3d_unet and spmm we find that
some of the performance benefit comes from better L1 cache
hit rates due to improved memory access ordering.

I. Other GPU Configurations

Figure 20 presents a sensitivity study of WASP on other
GPU configurations with different bandwidth to compute ra-
tios. We vary the L2 and DRAM bandwidth on baseline A100
and WASP GPUs, by halving and doubling both bandwidths.
We label these configurations 1

2 BW and 2× BW respectively.
In the figure, we show performance for each application
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TABLE IV: WASP Area Overhead (Storage Requirements)

Item Per-SM Storage Per GPU
Warp Mapper 32 CTAs x 132 bits per entry ∼ 56 KB
Warp Scheduler 64 Warps x 7 bits per entry ∼ 48 KB
RFQ Metadata 64 Warps x (4 x 9 bits per entry) ∼ 30 KB
WASP-TMA 2 x 128 bytes per entry ∼ 27 KB
Total ∼ 162 KB

considering all of it’s CUDA kernels, with speedup for all
the configurations normalized to the A100 baseline.

First, we observe that the A100 baseline is a balanced
design - across the applications, halving the bandwidth gen-
erally halves performance (geometric mean 0.75×). From
this perspective, applications fall into two groups: bandwidth
sensitive (e.g. 3d_unet, pointnet, hpcg) and bandwidth
insensitive (e.g. spgemm1 and lulesh). When less band-
width is available, WASP is able to more efficiently use what
is available, reaching the performance of the baseline A100
with just 1

2 memory bandwidth. Exemplars of this include
(3d_unet, bert, gpt2, rnnt, spmm, and bfs), where
WASP at half memory bandwidth is able to reach or exceed
performance levels of the baseline at double bandwidth. This
is because by design, WASP can spread out memory accesses
over time, reducing the total bandwidth requirements of the
GPU architecture.

When bandwidth is doubled with the A100 2× and WASP
2× configurations, some applications see benefits when they
are not computation bound. Examples include pointnet,
rnnt, bfs, mst, and sp. In these applications the baseline
is unable to utilize the additional bandwidth, being limited by
address generation overheads and serialization. WASP’s ability
to overlap requests and create a producer-consumer pipeline
allows it to better extract the available memory bandwidth.

J. WASP Hardware Complexity

WASP requires additional hardware support in the SM’s
warp mapper, warp scheduler, register file, and TMA unit
(Figure 4). However, WASP requires only minor changes to
control logic and not datapaths or data storage, resulting in a
low cost amortized across the vector width of the SM. Table 4
presents the overhead for the main cost of the augmentation,
which is metadata storage. The total extra storage required on
the GPU is less than 162 kilobytes. Overall, we estimate that
the total additional hardware area required for WASP is less
than 1% of the total GPU chip area.

The warp mapper in the SM requires new storage space to
store the augmented thread block specification and extra FSM
logic. For each thread block, WASP requires an additional 4
bits to specify number of stages, and 16 bytes to specify the
unique number of registers (maximum 256) required for each
stage. The FSM requires an additional inner loop that iterates
over the number of stages, allocating the specified registers
for the stage.

Warp schedulers in the processing blocks require more state
storage per warp, and combinatorial logic to combine the
new state into a priority. The extra state needed for each

warp’s scheduler entry are bits for stage id, is_empty, and
is_full.

For RFQs, the main cost is in the queue mapping table and
update logic for the processing blocks. WASP supports one
RFQ per warp on the SM, and the queue mapping table stores
four indices into a 512-entry register file. The update logic
requires two sets of 9-bit adders, comparators, and muxes to
update the head and tail pointers using the mapping bounds.

WASP-TMA enables the ability to issues loads with SMEM,
a particular warp’s RFQ, or TMA (gather) as the destination.
For gather operations, a two-entry ping buffer for intermediate
indices and extra control logic for routing the second phase is
needed.

VI. OTHER RELATED WORK

There is substantial prior work on overlapping memory
accesses and compute on GPUs. Warp specialization was
first introduced in CudaDMA for coarse-grained memory tile
transfers to SMEM [1], and has been used in many applications
to overlap computation and memory [2], [19], [48]. Similar
work decouples regular affine computations from the rest of
GPU kernel [46]. WASP extends state-of-the-art work on warp
specialization with new hardware and compiler support.

Prior work also focuses on improving warp and thread
block scheduling to better overlap memory access and com-
pute [39] and with improved memory access scheduling for
cache locality [16], [36]. One particular work investigated
horizontal fusion as a way to concurrently execute kernels
with opposing memory-intensive and compute-intensive be-
havior [17]. WASP uses warp specialization to explicitly
extract parallelism within a single kernel and overlap memory
access and compute.

Prior work on coarse-grained transfers include D2MA and
Hopper that employ a hardware accelerator exposed to pro-
grammer [11], [23] and vector instructions added to the GPU’s
ISA for gather/strided patterns [8]. WASP uses WASP-TMA,
a new offload accelerator for fine- and coarse-grained data
movement that integrates with warp specialized pipelines on
GPUs. Prefetching has been explored in the context of GPUs
broadly [15], [38], to improve thread block scheduling [13],
[29], and for indirect memory gathers [49]. WASP leverages
warp specialization to make only demand requests to the
memory subsystem and avoids speculative memory accesses.

Modern GPUs also provide support for pipeline parallelism
between threads blocks executing on different SMs. Nvidia’s
Hopper H100 allows direct data communication between SMs
via distributed shared memory [23]. VersaPipe enables thread
blocks to dynamically act as different pipeline stages using
task queues existing in global memory [50]. Unlike WASP,
both of these techniques do not explicitly take advantage of
the heterogeneity of pipelines stages either in hardware or
software, nor provide execution overlap at the SM level. Sym-
phony is a new GPU-like accelerator and programming lan-
guage design which enables explicit programming of pipeline
stages that are connected together [31]. WASP provides com-
piler support for pipeline parallelism more transparently to the
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programmer while integrating supporting hardware features on
existing GPUs.

Decoupled access-execute processors (DAE) explicitly split
memory and compute into two distinct programs that exe-
cute concurrently [40]. DAE has been introduced into mul-
ticores [10], [47] augmented to handle memory indirection
on a multi-threaded manycore processor [9], integrated into
an out-of-order core to support graph algorithms [20]. Other
related work developed languages and compilers partition a
program into sub-contexts for execution on parallel processors
that communicate using queues [30], [37], [42], [44]. WASP
focuses on new hardware and software mechanisms specifi-
cally for GPUs that enables pipeline-aware execution.

VII. CONCLUSION

In this work, we present WASP, hardware and compiler
support for warp specialization, a powerful technique for
overlapping memory access and compute operations to accom-
plish better GPU performance. WASP improves over state-of-
the-art GPUs by introducing: new hardware to handle fine-
grained memory access patterns, pipeline-aware warp mapping
and scheduling, and a compiler that reduces programmer
burden. We find that the WASP compiler improves runtime
performance over state-of-the-art GPUs by 23%, and by 47%
when combined with the new WASP hardware.
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